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Quantum Foam and de Sitter-Like Universe

P. A. Zizzi1

Received November 6, 1998

We perform a foliation of a four-dimensional Riemannian space-time with respect
to a discrete time which is an integer multiple of the Planck time. We find that
the quantum fluctuations of the metric have a discrete energy spectrum. The
metric field is expanded in stationary eigenstates, and this leads to the description
of a de Sitter-like universe. At the Planck scale the model describes a Planckian
Euclidean black hole.

1. INTRODUCTION

The concept of a singularity (big bang, black holes, and big crunch) is

a classical one, and it is generally assumed that singularities that occur in

general relativity can be avoided by a suitable quantum correction to the

classical theory.(10,8,5)

There are three kinds of gravitational collapse: black holes, the big

crunch, and the ª collapseº of space-time at the Planck scale, which is quantum

and takes place always and everywhere giving rise to ª quantum foam.º (21,22,19)

Quantum foam is a wormhole-like structure of space that arises at very

small scales close to the Planck scale once the huge gravitational quantum

fluctuations have destroyed the smooth, simply connected space-time
manifold.

Much research work has been done to cure singularities by using quantum

effects. One of the most important examples is the Euclidean Schwarzschild

black hole,(7,11) where the imaginary time coordinate is identified with a period

which is the inverse of the temperature. Another very important example is

the Hawking±Hartle quantum cosmology that describes cosmological models
with Euclidean metrics: the no-boundary proposal.(9)
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In some current research work (6,1,15,18) the existence of a limiting curva-

ture has been postulated and under this assumption a de Sitter universe, which

replaces the singularity, is produced inside a black hole.

In this paper, we consider the third kind of collapse. We make a time

slice of 4-dimensional space-time. The initial time and the time step are both

equal to the Planck time. The slice n will be at time tn which is an integer

multiple of the Planck time. We look into smaller and smaller regions of

space of linear dimension equal to the proper length Ln. The observation

requires a large amount of energy: the smaller the region under study, the

larger is the energy required to observe it. When we reach the cutoff (the

Planck length) we must spend the Planck energy. To ª observeº the Planck

scale is equivalent to creating a mini black hole with Planck mass.(12) This

is just another possible interpretation of the quantum foam.

At the Planck scale, both gravitational and vacuum quantum fluctuations

are very strong: in particular, the gravitational quantum fluctuations get their

maximal value. Virtual particles and virtual gravitons are created in vacuum,

and they can be converted into real particles only if a very large surface

gravity is present as in the case of the Hawking radiation.(13)

In this paper, we find that the gravitational quantum fluctuations have

a discrete energy spectrum. We then expand the metric field in stationary

eigenstates, and this allows us to calculate the expansion factor of an idealized

cosmological model based on these assumptions.

The model describes a Euclidean de Sitter-like universe with a positive

cosmological constant whose value today is in agreement with inflationary

theories. The horizon temperature is the inverse of the period of the gravita-

tional quantum fluctuations.

At the Planck scale the model describes a Planckian Euclidean Schwarz-

schild black hole.

In Section 2 we consider the Wheeler relation for the quantum fluctua-

tions of the metric in the case of a discrete time slicing of space-time. This

leads to the expansion of the metric in stationary eigenstates. In Section 3

we perform a qualitative analysis of the Riemann tensor in terms of the

quantum gravitational fluctuations and we find that they have a discrete

energy spectrum. In Section 4 we compute the expansion factor for the

cosmological model based on the previous results. The model describes a de

Sitter-like universe. In Section 5 we consider the static Euclidean form of

the metric. We find that there are event horizons at each proper length LN

and that at the Planck scale the de Sitter event horizon coincides with that

of a Planckian black hole. In Section 6 we calculate the proper energy E V

associated to the gradient V N,N 1 1 of the curvature tensor from slice N to slice

N 1 1. We find that for N corresponding to the age of the universe, E V is
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the rest mass energy of 1080 baryons (the total number of baryons inside the

cosmological horizon). Section 7 is devoted to some concluding remarks.

2. STATIONARY EIGENSTATES OF THE METRIC

Let us consider a four-dimensional Riemannian space-time with metric

g m n ( m , n 5 0, 1, 2, 3). At some point x the metric g m n (x) has three positive

and one negative eigenvalue. Let g m n (
-

x , t) have the generic form

g m n (
-

x , t) 5 1 g00 5 2 1 0

0 gij(
-

x , t) 2 , i, j 5 1, 2, 3 (1)

Let us consider a time slicing of space-time. The initial slice is at time

t0 5 t*, where t* is the Planck time:

t* 5 1 " G

c5 2
1/2

> 5.3 3 10 2 44 sec (2)

The time step is D t 5 t*.

The slice of order n is at time

tn 5 (n 1 1)t*, n 5 0, 1,2, . . . (3)

To each time tn corresponds a proper length:

Ln 5 ctn 5 (n 1 1)L* (4)

where L* is the Planck length:

L* 5 ct* 5 1 " G

c3 2
1/2

> 1.6 3 10 2 33 cm (5)

Let us consider the Wheeler relation(21)

D (g m n ) [
D g m n

g m n
>

L*

L
(6)

where D (g m n ) is the quantum fluctuation of the metric and L is the linear

extension under study. If we take into account the time-slicing (3), Eq. (6)

can be written as

D (g m n )n 5
L*

Ln

5
t*

tn
5

1

n 1 1
(7)

For n 5 0 we recover the well-known result
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D (g m n )0 5 1

which means that at the Planck scale (t0 5 t*) the quantum fluctuation of

the metric takes its maximum value.

Following Wheeler, we take that in quantum geometrodynamics, as well
as in electrodynamics, when one examines a region of vacuum of dimension

L, the fluctuation energy is of order(21)

E ’
" c

L
(8)

Moreover, in quantum geometrodynamics there is a natural cutoff : the Planck

length L*. In our case, Eq. (8) becomes

En >
" c

Ln

5
" c

(n 1 1)L*
5

E*

n 1 1
(9)

where E* is the Planck energy:

E* 5 1 " c5

G 2
1/2

> 1.2 3 1019 GeV (10)

Equation (9), as we shall see in more detail in the following, gives the discrete

energy spectrum of the gravitational quantum fluctuations.
At the Planck scale (n 5 0) we recover E0 5 E*.

The proper length Ln in Eq. (9) can be interpreted as the wavelength l n

associated to the quantum fluctuation D gn and Eq. (9) can be written as

En > " c

l n

5 " v n 5
2 p "
Pn

(11)

where

Pn 5 2 p (n 1 1)t* (12)

is the period of the gravitational quantum fluctuations.

Let us expand the spatial components of the metric field gij(
-
x , t) in

stationary eigenstates gijn(
-

x , t):

gijn(
-

x , t) 5 gijn(
-
x )e 2 iEnt/ "

where the eigenvalues En are given in Eq. (11).
We get

gij(
-

x , t) 5 o
1 `

n 5 0

gijn(
-

x )e 2 it/(n 1 1)t* (13)

in the infinite sum we do not take into account times preceeding the

Planck time.
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In Eq. (13) gijn(
-

x ) is the 3-geometry of the generic nth hypersurface, t
is the continuous time which flows across the slices, and tn 5 (n 1 1)t* is

the discrete time which labels the slices.
For a fixed n 5 N, the metric field gij(

-
x , t) collapses to the eigenstate

N with eigenvalue EN:

gij(
-

x , t) 5 gijN(
-

x )e 2 iENt/ " (14)

for tN , t , tN 1 1, and

gij(
-

x , tN) [ gijN(
-

x ) (15)

for t 5 tN.

3. THE DISCRETE ENERGY SPECTRUM

The spatial components of the Riemann tensor at t 5 tN 5 (N 1 1)t*
are, by definition, and in dimensional terms only

RiemN 5
g2

N

L2
N

[ a ( D gN)2 1 b D ( D gN)] (16)

where a and b are two real numbers, and gN [ gijN (
-

x ) stands for any covariant

spatial components of the metric tensor at t 5 tN; that is, gN is the 3-geometry
of the Nth spacelike hypersurface. Here LN 5 (N 1 1)L* > g1/2

N D x is the

proper length associated to a general coordinate variation D x and D gN > L*/

LN 5 1/(N 1 1) is the quantum fluctuation of the metric on the slice N.

The terms ( D gN)2 and D ( D gN) in Eq. (16) stem respectively from the

terms G G ±G G and - G ±- G in the Riemann tensor.
We obtain

( D gN)2 ’ D ( D gN) ’
1

(N 1 1)2 (17)

Then RiemN in Eq. (16) takes the form

RiemN > g
g2

N

(N 1 1)4L*2 (18)

where g is a constant factor.

The Ricci tensor is defined as

RicciN > g 2 1
N RiemN

where g 2 1
N stands for any contravariant spatial component of the metric tensor

at t 5 tN.
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The curvature scalar is defined as

RN > g 2 2
N RiemN

Hence the Einstein tensor

GN 5 RicciN 2
1

2
RNGN

has the structure

GN > g 2 1
N RiemN > g

gN

(N 1 1)4L*2 (19)

The Einstein field equations are

GN 2 L NgN 5
8 p G

c4 TN (20)

where L N is a positive cosmological constant and TN stands for any spatial

components of the stress energy-momentum tensor at t 5 tN.

Let us integrate the field equations over a 3-dimensional spacelike hyper-

surface S with unit normal n > g 2 1/2
N :

# S

GN(n, n) d S 5 # S

( L NgN)(n, n) d S 1
8 p G

c4 # S

TN(n, n) d S

where d S is the proper volume element of S . We get

[g 2 1
N GN]L3

N 5 [ L n]L3
N 1

8 p G

c4 EN

where EN is the proper energy within a subset of S with proper volume
L3

N, and the bracketed quantities are averages over the proper volume of

integration. Then, we have

g
L*

N 1 1
5 L N L3

N 1
8 p G

c4 EN 5
8 p G

c4 [E VAC
N 1 EN] (21)

where

E VAC 5 # S

T VAC
N (n, n) d S 5

c4

8 p G
L NL3

N

For L N 5 0, we get
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EN 5 g
c4

8 p G

L*

N 1 1
5 g

c5t*

8 p G

1

N 1 1
5

g
8 p

E*

N 1 1
(22)

where E* is the Planck energy in Eq. (10) and the time±energy uncertainty

principle has been used with D t 5 t*.

The proper energy EN in Eq. (22) is the quantized gravitational energy

carried by the quantum fluctuation of the metric on the Nth slice.
From the interpretation of the Landau±Liftshitz pseudotensor tÃN , it fol-

lows that the nonlocal gravitational energy resides in the nonlinear terms of

the curvature tensor. By definition we have

) det gN ) g 2 2
N tÃN > 1 D gN

D x 2
2

(23)

where ) det gN ) > g4
N. Then we have

tÃN >
1

g2
N 1 D gN

D x 2
2

(24)

By integration, we get

# S

tÃN(n, n) d S 5 [g 2 1tÃN] > 8 p G

c4

E GRAV
N

L3
N

(25)

From Eqs. (24) and (25) it follows that

F 1

g3
N 1 D gN

D x 2
2 G >

8 p G

c4

E GRAV
N

L3
N

where 1/( D x)2 5 gN /L2
N. We obtain from Eq. (25)

1 D gN

gN 2
2

> 8 p G

c4

E GRAV
N

(N 1 1)L*

where we recall that ( D gN /gN)2 5 1/(N 1 1)2.

Finally we have

E GRAV
N >

E*

N 1 1
(26)

For L N Þ 0, the proper energy is shared between vacuum and gravitational

quantum fluctuations:
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E VAC
N 1 E GRAV

N 5 g
c4

8 p G

L*

N 1 1
(27)

4. THE COSMOLOGICAL MODEL

Our purpose is to build up an isotropic and homogeneous cosmological

model based on the previous assumptions. We shall use the Robertson±Walker

metric. For simplicity we consider the flat case (K 5 0):

ds2 5 2 dt2 1 R2(t)[dr 2 1 r 2 d V 2] (28)

where d V 2 5 d q 2 1 sin2 q d w 2 is the surface element of the unit 2-sphere

and R(t) is the expansion factor.

Our aim is to compute R(t). The first step is to factorize the initial 3-

geometry gij0 (
-

x ) in Eq. (13). At cosmological scales (very large N ) higher
order fluctuations of the metric can be discarded and we get

gN ’ (N 1 1)g0 (29)

where g0 is the 3-geometry of the initial slice at t 5 t0 [ t*. By the use of
Eq. (29), Eq. (13) becomes

gij(
-

x , t) 5 gij0(
-

x ) o
N

n 5 0

(n 1 1) e 2 it/(n 1 1)t* (30)

Let us consider the line element

d s 2 5 gij(
-

x , t) dxi dx j

and let us assume that we know the initial 3-geometry at the initial time t 5 t0,

g ij(
-

x ) [ gij(
-

x , t0)

Two adjacent world lines of the cosmological fluid with coordinates respec-

tively {xi} and {xi 1 D xi} at time t0 are separated by the proper distance

D s (t0) 5 ( g ij D xi D x j)1/2

At some later time t, the two word lines will be separated by some other

proper distance D s (t). The spatial constant ratio D s (t)/ D s (t0) defines the
expansion factor R(t).

In our case

g ij(
-

x ) [ gij0(
-

x ), t0 5 t*

and gij(
-

x , t) is given by Eq. (30). Then we have
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D s (t*) 5 (gij0(
-

x ) dxi dx j)1/2 (31)

D s (t) 5 1 gij0(
-

x ) o
N

n 5 0

(n 1 1)e 2 it/(n 1 1)t* dxidxj 2
1/2

(32)

and the expansion factor takes the form

R( t ) 5
D s (t)

D s (t*)
5 o

N

n 5 0

(n 1 1)1/2 e t /2(n 1 1)t* (33)

where t 5 2 it.
The time derivative of the expansion factor is

RÇ (t) 5
1

2t* o
N

n 5 0

e t /2(n 1 1)t* (34)

Numerical computations give the expression of the Hubble constant for large
N (and 0 , t , 1)

HN 5
RÇ ( t )

R( t )
5

3

2(N 1 1)t*
(35)

The cosmological time is defined as

H 2 1
N 5

2

3
(N 1 1)t* (36)

By the use of the expression of R(t) in Eq. (33), the Robertson±Walker metric

in Eq. (31) becomes

ds2 5 2 dt2 1 o
N

n 5 0

(n 1 1)e 2 it/(n 1 1)t* [dr 2 1 r 2 d V 2] (37)

The field equations are those of a de Sitter-like model:

3H 2
N 5 L Nc2 (38)

By the use of Eq. (35), we get from Eq. (38)

L N 5
27

4

1

(N 1 1)L*2
(for large N ) (39)

The vacuum energy density is then

r VAC
N 5

c2 L N

8 p G
5

27c2

32 p G

1

(N 1 1)2L*2
(40)

The cosmological time today is H 2 1 > 5 3 1017 sec, which corresponds to

the value N > 7 3 1060 in Eq. (36).
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From Eq. (39) it follows that the value of the cosmological constant today is

L NOW > 5 3 10 2 56 cm 2 2 (41)

which is in agreement with inflationary theories.

At the Planck scale (n 5 0), one verifies that

H0 5
1

2t*
(42)

and

L 0 ’ R* (43)

where R* 5 1/L*2 is the radius of Planckian curvature.

5. THE PLANCKIAN BLACK HOLE PARADIGM

Let us consider the static form (with Killing vector z 5 - t) of the de

Sitter metric:

ds2 5 2 1 1 2
H 2

c2 r 2 2 dt2 1 1 1 2
H 2

c2 r 2 2
2 1

dr 2 1 r 2 d V 2 (44)

which is rather like the Schwarzschild solution:

ds2 5 2 1 1 2
2M

r 2 dt2 1 1 1 2
2M

r 2
2 1

dr 2 1 r 2 d V 2 (45)

In Eq. (44) there is an apparent singularity at r 5 c/H that can be removed

(as in the Schwarzschild case) by a coordinate transformation giving rise to
an event horizon.

In our model, there are event horizons at

rN 5
3

2

c

HN

5 LN 5 (N 1 1)t* (46)

where HN is given by Eq. (35) for large N and by Eq. (42) for n 5 0.

However, while a black hole has an absolute horizon, the de Sitter
horizon is an observer-dependent horizon. This means that an observer on

the Nth hypersurface at t 5 tN will receive signals from all the other hypersur-

faces at t 5 tn with n , N, but not from those with n . N. Only at the

Planck scale (n 5 0) does the de Sitter horizon
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r0 5
c

H0

5 2L* (47)

become an absolute horizon, as it coincides with the Schwarzschild radius

of a Planckian black hole:

r* 5
2M*G

c2 5 2L* (48)

where M* is the Planck mass:

M* 5 1 " c

G 2
1/2

> 2.17 3 10 2 5 g (49)

If in the static form of the de Sitter metric (44) we put t 5 2 it, we get a

Euclidean metric(11)

ds2 5 d t 2 1
1

H2 cosH t (dr 2 1 sin2r d V 2)

In our model, there is an apparent singularity at HN 5 0 (for N ® 1 ` ) that

can be removed as in the most general case discussed by Hawking.

The imaginary time is identified with the period

PN 5
3

2

2 p
HN

5 2 p (N 1 1)t* (50)

Let us recall that the period PN in Eqs. (12) and (50) is the period of the

gravitational quantum fluctuations.
The temperature is

TN 5
1

PN

5
1

2 p (N 1 1)t*
(51)

the area of the event horizon is

AN 5
9

4

4 p c2

H 2
N

5 4 p L2
N (52)

and the entropy is

s N 5
9

4

p c2

HN

5 p L2
N 5

1

4
AN (53)

At the Planck scale (n 5 0) we have

P0 5 2 p t* (54)

T0 5
1

P0

5
1

2 p t*
(55)
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A0 5 4 p L*2 (56)

s 0 5 p L*2 5
1

4
A0 (57)

At the Planck scale, the expansion factor in Eq. (33) is the generator of a
U(1) group:

R(t) 5 e 2 it/2t* (58)

This makes space-time at the Planck scale a multiply connected manifold.

The space-time topology at the Planck scale becomes the topology of

a Euclidean Schwarzschild black hole:

RSPACE 3 S1
TIME 3 S2 (59)

This interpretation of the quantum foam does not disagree with that of

Wheeler; in fact, under a dual transformation

U(1)TIME Û U(1)SPACE (60)

The space-time topology in Eq. (59) becomes that of a wormhole with

one handle(2)

RTIME 3 S1
SPACE 3 S2 (61)

We conclude by saying that at the Planck scale our cosmological model

behaves as a Planckian black hole. So at that scale the Hawking effect(13)

may occur because of the high temperature.

6. THE BARYON NUMBER

The gradient of the gravitational quantum fluctuations from slice N to
slice N 1 1 is

v N,N 1 1 5 D gN 2 D gN 1 1 5
1

(N 1 1)(N 1 2)
(62)

and the gradient of the curvature tensor from slice N to slice N 1 1 is defined as

V N,N 1 1 5
gNgN 1 1

LNLN 1 1

v N,N 1 1 5
g2

0

L*2

1

(N 1 1)(N 1 2)
(63)

We recall that

gN 5 (N 1 1)g0, LN 5 (N 1 1)L* (64)

where L* is the Planck length and g0 is the three-geometry on the initial slice
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N 5 0. The V N,N 1 1 in Eq. (63) is responsible for tidal effects which occur

in the change of the radius LN ® LN 1 1 of the event horizon of the de Sitter

universe. At very small scales, the tidal effects are very large. For N 5 0,
where the de Sitter event horizon coincides with the Planckian black hole

horizon, the Hawking radiation takes place.

A stress energy-momentum tensor T ( V )
N can be associated to V N,N 1 1

where V N,N 1 1 [ g 2 1
0 V N,N 1 1, by the field equations:

V N,N 1 1 5
8 p G

c4 T ( V )
N (65)

Let us integrate Eq. (65) over a 3-dimensional hypersurface S with unit

normal n > g 2 1/2
0 :

# S

V N,N 1 1 (n, n) d S 5
8 p G

c4 # S

T ( V )
N (n, n) d S (66)

where d S is the proper volume element of S . We get

[g 2 1
0 V N,N 1 1] L3

N 5
8 p G

c4 E ( V )
N (67)

where E ( V )
N is the proper energy within a subset of S with proper volume

L3
N and the bracketed quantity is an average over the proper volume of

integration.

Then, we have

E ( V )
N 5

c4

8 p G

(N 1 1)2

N 1 2
L* 5

1

8 p
(N 1 1)2

N 1 2
E* (68)

where E* is the Planck energy.

For N > 7 3 1060 corresponding to the cosmological time H 2 1
NOW 5 5 3

1017 sec, we obtain

E ( V )
NOW ’ 1080mpc

2 (69)

where mp > 1.6 3 10 2 24 g is the proton mass and the number 1080 ’ NE is

the total number of baryons inside the visible universe. The number NE 5
4/3 p (H 2 1

NOWc)3 r NOW /mp ’ 1079 (where H 2 1
NOW is the age of the universe, r NOW

is the present density of the universe, mp is the proton mass, and c is the
velocity of light) was evaluated by Eddington (4) and is often termed the

ª Eddington number.º

Then we can interpret the proper energy in Eq. (69) as the rest mass

energy of the total number of baryons inside the cosmological horizon.
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7. CONCLUSION

In this cosmological model, we have considered the Planck time as the

quantum of time in performing the time slicing. This has been done with the

aim of describing the behavior of the quantum fluctuations of the metric

from the Planck scale to the Hubble radius scale. Then the model describes

a Planckian Euclidean black hole which suddenly turns into a Euclidean de

Sitter-like universe. We interpret this quick phase transition as due to the

fact that the Planckian black hole emits Hawking radiation very rapidly. In

fact, Hawking radiation rate is related to the gradient of the curvature tensor

V N,N 1 1 and it decreases down quite rapidly, as exp( 2 N 2). The sudden evapora-

tion makes the black hole cool and expand (the temperature falls as 1/N and

the area increases as N 2).

At this point one could wonder whether the model describes a Planckian

black hole that expands to a de Sitter universe, or, conversely, a de Sitter

universe that implodes to a Planckian black hole. The answer is given by

the arrow of time, defined by the increase of entropy. In Section 5 we found

that entropy increases as N 2, thus the model should describe an expanding

Planckian black hole.

Penrose’ s Weyl tensor hypothesis (WTH)(16) is a speculation that the

Weyl tensor may be related to a sort of gravitational entropy which is zero

for an initial singularity and goes to infinity for a final singularity. This would

account for the time asymmetry of the universe.(17) In our model, we interpret

[( D g)N] 2 2 ’ (N 1 1)2 as the gravitational entropy of the Nth hypersurface.

Apparently, an inconsistency with the WTH arises in this model. In fact,

it would seem unlikely that a final singularity with infinite Weyl curvature

(in our case the Planckian black hole) could also be an initial singularity

with zero Weyl curvature (in our case the starting point of the de Sitter

universe) unless strong cosmic censorship fails, at least at the Planck scale.

The fact that quantum effects could violate the cosmic censorship hypothesis

has also been discussed by Hawking.(14)

We recall that we are dealing with a Planckian black hole and a de Sitter

universe that are both Euclidean, so that they are supposed to be singularity-

free. Nevertheless, we guess that some relation must exist between the failure

of the strong cosmic censorship at the Planck scale and the U(1) dual symmetry

described in Section 5.

Moreover, for an initial singularity which has zero Weyl curvature, all

the curvature must reside in the Ricci tensor, so that matter must be present

from the beginning and ª creation ex nihiloº (20) should be excluded.

In our case, however, the model is that of a Euclidean de Sitter-like

universe (with no ª starting pointº ) which is empty although the Ricci tensor
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is not identically zero. In fact, in this model, the Ricci tensor is the ª effective

energy-momentum tensorº of the geometry quantum fluctuations.

To get a more realistic model with matter, one should take into account
the gradient of the curvature tensor V N,N 1 1, which can be interpreted as a

modification term of Einstein’ s field equations at the Planck scale due to the

huge vacuum and geometry quantum fluctuations. The proper energy E V
N that

is associated to V N,N 1 1 increases with N. The Hawking radiation that reaches

an observer on the Nth hypersurface is then interpreted as consisting of the

total number of particles inside the horizon at the cosmological time H 2 1
N ,

with rest mass energy E V
N . (Perhaps we should recall that, as the de Sitter

horizon is observer-dependent, the Nth hypersurface will receive signals from

all the other n-hypersurfaces, with n , N.)

The present value of E V
N (for N ’ 1060) is the rest mass energy of 1080

baryons, in agreement with Eddington’ s arguments. This result seems to be

related to ª the large number hypothesisº (LNH) that originally goes back to
Eddington and is concerned with the fact that there is a numerical coincidence

between various basic quantities in cosmology, including the baryon number.

The LNH was developed and made formal by Dirac, (3) who further required

that Newton’ s gravitational constant G varies with time. Of course, as is well

known, this theory failed against experiment. What remains at present of the
LNH is the anthropic principle approach, which is primarily philosophical.

We hope that our result could be a hint at a modern mathematical interpretation

of the LNH. In fact, Eddington originally conceived the LNH in the perspec-

tive that those numerical coincidences could be explained by theoretical

arguments.
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